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SUMMARY

Moving �nite element methods are well established for solution of systems of partial di�erential equa-
tions which contain regions where the solution is rapidly varying but moving. The string or second
gradient weighted moving �nite element method (SGWMFE) uses a piecewise linear discretization of
a single evolving manifold to approximate the solution of the PDEs.
In the case of one space dimension, x, and two dependent variables, u(x; t) and v(x; t), the solution is

calculated from the normal motion of a single manifold [x(�; t); u(�; t); v(�; t)], where � is a parameter
along the mani�old, or a ‘string’ embedded in [x; u; v] space. This method can be extended to multiple
dimensions and an arbitrary number of dependent variables in which case the ‘string’ parameterization
analogy is replaced by a multi-variable parameterization.
In this paper, we outline the application of SGWMFE for solution of the shallow water equations in

one and two space dimensions. We describe the results of a number of numerical experiments, including
varying the initial distribution of nodes. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: moving �nite elements; partial di�erential equations; r-adaptive mesh; moving mesh;
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1. INTRODUCTION

The gradient weighted �nite element method (GWMFE) was developed in References [1, 2]
for one- and two-dimensional problems. A second GWMFE method for systems of PDEs was
proposed by Reference [3] and its implementation for one-dimensional problems outlined in
[4]. In this paper, we give brief details of the extension from one space dimension to two
space dimensions using the shallow water equations as a model system of PDEs but do not
discuss implementation issues. In Reference [4], the implementation of the SGWMFE method
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was aided for a system of PDEs in one dimension by use of a projection matrix. We describe
the projection matrix for one dimension and its extension to two space dimensions.
As for other GWMFE solutions of the inviscid shallow water equations [5], we use added

di�usion in the PDEs, with a small di�usion coe�cient so as to complete the system of
equations and to provide a classical solution. The addition of di�usion prevents the occurrence
of in�nite gradients and multivalued foldover. Thus, we compute with di�usion as small as
we can handle (numerical di�culties arise because of the resulting exceedingly thin shocks)
in order to approximate a desired ‘zero di�usion limit’ weak solution.

2. STRING GRADIENT WEIGHTED MOVING FINITE ELEMENTS

Consider, in one space dimension, the example system of PDEs

ut =L1(u; v); vt =L2(u; v) (1)

for the two unknown functions u(x; t) and v(x; t) on an interval. Here, L1 and L2 are �rst-or
second-order nonlinear di�erential operators. The solution graphs for system (1) may be treated
as a single evolving one-dimensional mainfold (a ‘string’) immersed in three dimensions, that
is as (x; u(x; t); v(x; t)). Under reparamerterization with a moving variable x(�; t), the string
becomes an evolving parameterized manifold

u(�; t)= (x(�; t); u(�; t); v(�; t)) (2)

At each parameterized point on the evolving manifold, we divide the motion vector
u̇=(ẋ; u̇; v̇) into its tangential, [u̇]T, and its normal, [u̇]N, parts. The original system (1) was
the equation for the ‘vertical’ motion (0; ut ; vt) of the manifold (0; L1(u; v); L2(u; v)). Since
(x; u(x; t); v(x; t)) is one parameterization of the solution manifold, we automatically have the
same normal motion



ẋ

u̇

v̇



N

=



0

ut
vt



N

=



0

L1
L2



N

(3)

for any other parameterization. The equation for the normal motion is thus a system of three
PDEs for the three unknown functions x(�; t); u(�; t); v(�; t) (a degenerate system since the
tangential component of the motion is left completely free).
The implementation was simpli�ed in Reference [4] by using the projection matrix P,

which projected any given vector, F, into its normal part, [F]N at a given point on a ‘string’,
(x; u(x); v(x)). In one dimension, the tangential projection is given by

[F]T =D−1XXTF (4)

where X=(1; ux; vx)T is a tangent vector to the manifold at this point and D=XTX.
Hence,

[F]N =F− [F]T = (I −D−1XXT)F=PF (5)
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where

P= I −D−1XXT =
1

1 + u2x + v2x



(u2x + v

2
x) −ux −vx

−ux (1 + v2x) −uxvx
−vx −vxux (1 + u2x)


 (6)

is constant on each element when using piecewise linear discretization.
Following Reference [1], Equation (3) is treated geometrically-mechanically, as a balance

of viscous drag forces and applied forces per unit arc length of the string, all in the normal
direction. The force balance Equation, (3), is discretized by letting the SGWMFE approx-
imant be an evolving, piecewise linear manifold with its three-dimensional nodal positions
uj=(xj(t); uj(t); vj(t)) as unknowns. The distributed normal forces are concentrated onto the
nodes to give a balance of three-dimensional forces

∫ 

ẋ

u̇

v̇



N

�j ds=
∫ 


0

L1
L2



N

�j ds (7)

at each node, where s is the arc length along the manifold, ds=
√
1 + u2x + v2x dx=

√
D dx

and �j is the usual piecewise linear ‘hat’ function centred on the jth node.
Consider now the case where the governing equations, (1), are dependent on two space

variables. In this situation, the solution manifold is described by

u(�; t)= (x(�; t); y(�; t); u(�; t); v(�; t)) (8)

where �=(�1; �2) is a two-dimensional parameter representing surface parameterization of the
manifold.
In order to calculate the normal motion of the manifold, de�ne two linearly independent

tangent vectors to the manifold, X=(1; 0; ux; vx)T and Y=(0; 1; uy; vy)T. Then, the normal
component of any vector F can be written as [F]N =PF where the projection matrix P is
given by

P= I −D−1{(YTY)(XXT)− (XTY)(XYT +YXT) + (XTX)(YYT)} (9)

where D=(XTX)(YTY)− (XTY)2.
The equations of normal motion are discretized using piecewise linear representation on

triangular elements in which case P is again constant on each element. As in one dimension,
the mechanical interpretation results in the concentration of forces onto nodes by

∫



ẋ

ẏ

u̇

v̇



N

�j dS=
∫




0

0

L1
L2



N

�j dS (10)

where dS is an element of area on the manifold which satis�es dS=
√
D dx dy.

In both one and two dimensions, Equation (10) can become very sti� and it is sometimes
necessary to add small regularization terms or internodal pressure terms to prevent the time
integration from failing; see Reference [1] for GWMFE and Reference [4] for SGWMFE.
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3. SHALLOW WATER EQUATIONS TEST PROBLEM

We test the SGWMFE method using the shallow water equations where a smooth initial
‘hump’ of stationary water is released at time zero; as the hump subsides under gravity,
a wave propagates away and the wave front steepens. The wave is then re�ected at the further
boundary. In this problem, a simulation should capture the front formation, wave height and
front speed.
In one dimension, the shallow water equations (with addition of arti�cial viscosity �) for

the �ow of a �uid with unit density and unit gravitational constant over a �at bottom are

ut + fx= �uxx; vt + gx= �vxx; with f= v; g=
(
v2

u
+
u2

2

)
(11)

where 06x610, u is the height of the �uid from the �at bottom and v is the �uid momentum
in the x-direction. For a systematic derivation of the shallow water theory, see Reference [6].
The initial conditions are given by u(x; 0)=0:2 + exp(−x2), v(x; 0)=0. We require ux=0

and v=0 at both boundaries.
The shallow water equations are extended to two dimensions by adding momentum w in

the y-direction:

ut +∇ · f = �∇2u; vt +∇ · g= �∇2v; wt +∇ · h= �∇2w (12)

with

f =(v; w); g=(v2=u+ u2=2; vw=u); h=(vw=u; w2=u+ u2=2)

For this problem, we use initial conditions v=w=0 and u(x; 0)=0:2 + exp(−x2 − y2)) and
solve on a square 06x65, 06y65 with re�ective boundary conditions: @u=@n=0 on the
four sides, @w=@n=0 and v=0 on x=0 and x=5 and @v=@n=0 and w=0 on y=0 and
y=5. Symmetry allows the solution to be extended to −56x; y65 so that the �ow is the
same as water collapsing under gravity in a box with re�ective walls.

4. RESULTS

Solutions for the one-dimensional shallow water equations using GWMFE and SGWMFE have
been given in Reference [1], respectively. Solutions for the two-dimensional shallow water
equations using GWMFE are found in [7]. In this paper, we show in Figure 1 the nodal
trajectories using SGWMFE in an x − t plot for varying initial distribution of nodes and for
varying internodal pressures showing how this pressure can help to maintain mesh structure.
The surface height using SGWMFE for a one-dimensional problem is shown in perspective
view and plan view in Figure 2, illustrating again that gradient weighted methods can capture
a very sharp front. For the two-dimensional problem, we show in Figure 3 the development
in time of the surface height as the initial hump subsides under gravity and is re�ected from
boundaries. The evolving triangular mesh is shown in Figure 4. It can be seen that the nodes
concentrate in the regions of large change in the solution. In Figure 5, we show the e�ect
of using three di�erent starting meshes. In each case, the meshes adjust very quickly to be
qualitatively similar as the solution manifold is tracked.
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Figure 1. Nodal trajectories, all with �=0:005: (a) x(�; 0)=9:9�4 + 0:1�; 06�61,
internodal pressure 10−7; (b) x(�; 0)=9:9�4 + 0:1�; 06�61, internodal pressure 10−11;
(c) x(�; 0)=10�; 06�61, internodal pressure 10−11; and (d) x(�; 0)=9:9�2+0:1�; 06�61,

internodal pressure 10−11. See Reference [1] for discussion of internodal pressure.

Figure 2. Surface height for one-dimensional problem showing 3D and contour view.
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Figure 3. Water depth for 2D problem: (a) t=0; (b) t=2; (c) t=5;
(d) t=7; (e) t=9; and (f) t=11.

0 2 4
0

1

2

3

4

5

(a)
0 2 4

0

1

2

3

4

5

(b)
0 2 4

0

1

2

3

4

5

(c)

0 2 4
0

1

2

3

4

5

(d)
0 2 4

0

1

2

3

4

5

(e)
0 2 4

0

1

2

3

4

5

(f)

Figure 4. Evolution of mesh for 2D problem: (a) t=0; (b) t=2; (c) t=5;
(d) t=7; (e) t=9; and (f) t=11.
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Figure 5. Evolution of di�erent starting meshes; each row
gives the mesh at times t=0; 4; 8; 12.

5. CONCLUSIONS

We have implemented the SWGMFE method for systems of PDEs with one and two space
dimensions. The results for shallow water equations show that the method is robust and easy
to generalize to multiple space dimensions and multiple equations. Examining di�erent starting
meshes shows that the nodes move to positions which, as expected, are determined by the
evolving manifold much more than the starting mesh.
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